Netzteile 2400W - 5000W "Unified DC"

Datenblatt

Vielseitig einsetzbare Reihe von steuerbaren Schaltnetzteilen mit wechselbaren Schnittstellen, gleiches Verhalten und Schnittstellen für alle Modelle

Kurzdaten

Eigenschaft	Wert	Einheit
Ausgangsstrom	6 - 100	Α
Ausgangsspannung	50 - 400	V
Ausgangsleistung	2500 - 5000	W
Netzspannung	230 oder 3x 400	V_{ac}

Anwendungen

- Kondensatorladung
- Batterieladung
- Hochfrequenzgenerator
- Elektromagnete
- Galvanik
- Schweißen
- Oberflächenbehandlung
- Elektro-Deoinisation (EDI)
- Hochleistungs-Laserdioden
- Vorregler für Linearnetzteil

Vorteile

- gleiche Schnittstellen für alle Modelle
- gleiches Verhalten aller Modelle
- sehr schnelle Regelung
- sehr schnelle Strombegrenzung
- komplett digitale Regelung
- modulare Plattform für kundenspezifische Modelle

Ihre Aufgabe

Sie brauchen Energie für Ihre industriellen Prozesse. Elektrische Energie. Steuerbare Energie. Energie, um zu heizen, zu galvanisieren, zu schweißen, um Lampen oder Laser anzutreiben, um Plasma zu erzeugen, um Kondensatoren zu laden. Die zugeführte Energie muß geneu dosierbar sein.

Sie brauchen die volle Kontrolle über Leistung, Spannung oder Strom, die zu jeder Zeit zugeführt werden soll. In Ausnahmesituationen müssen Sie die die Leistung sehr schnell begrenzen oder abschalten können. Um jederzeit eine stabile Spannung liefern zu können, muß das Netzteil seinen Ausgangsstrom sehr schnell verändern können.

Um Ihre Prozesse zu skalieren oder wachsenden Anforderungen zu genügen, brauchen Sie eine Reihe von Netzteilen, die verschiedene Spannungen oder Leistungen abdecken können.

Unsere Lösung

Die vereinheitlichten Netzteile "Unified DC" ist eine Serie von Netzteilen mit Spannungspegeln, wie sie für industrielle Prozesse gebraucht werden. Bisher bieten wir Modelle mit 2400W und 5000W an. Die modulare Plattform erlaubt kundenspezifische Ausführungen, auch mit höherer oder niedriferer Leistung.

Alle Netzteile der Serie haben gleiches Zeitverhalten. Sie haben auch gleiche Schnittstellen und Protokolle, um die Skalierung Ihrer Anwendung so einfach wie möglich zu machen.

Die Netzteile sind die erste Wahl, um schnell veränderliche Lasten zu versorgen. Sie sind damit auch sehr robust, weil jede Überlast-Situation vom Konzept her schon verhindert wird und damit keinen Schaden anrichten kann.

Der sehr kompakte Aufbau und die ganz geschlossene Konstruktion machen die Integration in Ihr Projekt zur einfachen Aufgabe. Die Kühlung ist integriert. Sie brauchen das Netzteil nur in ihrem Gehäuse oder einer ebenen Fläche anzubringen, die elektrischen Anschlüsse herstellen und einschalten!

Die Abmessungen der Netzteile sind sorgfältig gewählt. Sie können sie in 19-Zoll-Gehäusen montieren - zusammen mit Ihrer eigenen Elektronik - ohne Platz zu verschwenden. Gut dimensionierte Leistungshalbleiter ermöglichen eine niedrige Betriebstemperatur und eine hohe Zuverlässigkeit.

Funktion

Sie stellen die gewünschten Werte für die Spannung, Strom oder beides ein.

Die besondere Konstruktion des Umrichters macht jede Beschränkung der Stromänderungsg eschwindigkeit unnötig. Das gilt, obwohl ein isolierter Transformator eingesetzt ist. Spannung und Strom werden pulsweise geregelt. Die Regelung erfolgt ohne jede Verzögerung - und die Reaktion auf Überstrom oder Überspannung am Ausgang ist unmittelbar. Es gibt auch keine Beschränkung hinsichtlich der Häufigkeit von Überlast oder Kurzschluß am Ausgang.

Ein aktiver Einschaltstrombegrenzer vermeidet Stromspitzen beim Zuschalten der Netzspannung. Eine aktive Leistungsfaktorkorrektur (PFC) reduziert Harmonische und Blindstöme erheblich.

Interfaces

Alle Modelle der "Unified DC" Serie haben eine austauschbare Schnittstelle. Sie können diese auch später einfach selber gegen eine andere Schnittstelle Ihrer Wahl austauschen.

Alle Schnittstellen haben einen Bezugspol, der vom Ausgang des Netzteils isoliert ist.

Sie können aus den folgenden Möglichkeiten auswählen. Wenn Ihre Wunsch-Schnittstelle nicht dabei ist, stellen wir auf Anfrage gerne eine kundenspezifische Lösung her.

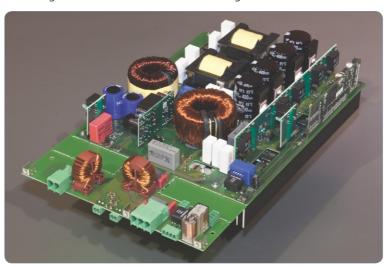
- Analog-Spannung 0-10Vdc, isoliert
- Analog-Stromschleife 4-20mA, jeder Kanal isoliert
- EIA-232C (RS232C)
- CAN

Anwendung

Die Netzteile sind für den Einsatz in Gehäusen oder Schaltschränken vorgsehen. Sie sind nicht ohne weiteres Außengehäuse **nicht** als Tisch-Geräte verwendbar.

Die Ausgangsspannung und die gespeicherte Energie der Netzteile haben gefährliche Werte. Deshalb muß in Ihrer Anwendung jedes Teil das Ausgangsspannung führt, geeignet isoliert sein, um Berührung durch den Menschen zu auszuschließen.

Ein Netzfilter ist eingebaut. Je nach Eigenschaft und Länge der Netzzuleitung oder Ihren besonderen Anforderungen kann ein zusätzliches Netzfilter erforderlich werden, um den gewünschten Störpegel zu erreichen.


Obwohl die Netzteile sehr schnell auf Laständerungen reagieren, empfehlen wir ohne zwischengeschaltete Kondensatorbank nicht die Verwendung als Pulsnetzteil. Wenn Sie die Geräte als Pulsnetzteil einsetzen wollen, also regelmäßig Ströme über dem maximalen Ausgangsstrom entnommen werden, sollten Sie eine Kondensatorbank zwischenschalten. Ansonsten sich die Lebensdauer der Kondensatoren im Netzteil erheblich.

Optionen

Mit dem digitalen Prozessor können wir kundenspzifische Regelungsverfahren, wie Rampen, Reaktion auf spezielle Lastzustände oder besondere Anlaufverfahren realisieren.

Ausgangsspannungen jenseits oder zwischen den Standard-Werten sind auf Anfrage lieferbar. 5kW-Netzteile sind auf Anfrage auch mit Wasserkühlung lieferbar.

Nicht aufgelistete Schnittstellen sind auf Anfrage lieferbar.

Technische Daten

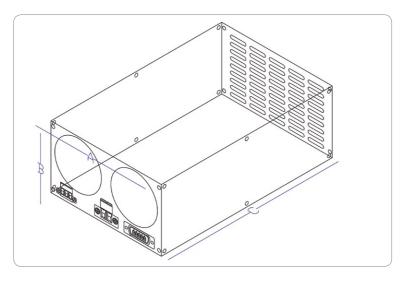
Die Netzteile sind nach EN61024-6 spezifiziert.

Norm	Nummer	Name
Spezification	EN61024-7:2007	Niederspannungs-Netzgeräte
CE-Kennzeichnung	93/68/EWG	
EMV allgemein	2004/108/EG	
EMV Emission	EN55011	Industrie-Anwendung
EMV Immunität	EN55011	Industrie-Anwendung
Elektrische Sicherheit	2006/95/EG	Niederspannungs-Richtlinie
Elektrische Sicherheit	EN60950-1:2006	Informationstechnik
Elektrische Sicherheit	EN61010-1	Laborausrüstung

Betriebsbereich	Klasse	min	typ	max	Einheit
Ausgangsspannung		0		(1)	V
Ausgangsstrom		0		(1)	Α
Ausgangsleistung	AE	0		(1)	W

⁽¹⁾ Modelle mit verschiedenen Ausgangsspannungen sind erhältlich, siehe Bestellnummern.

Safety Requirements	Klasse
Schutzkategorie	1
Schutzklasse	IP20
Überspannungskategorie	II
Verschmutzungsgrad	2

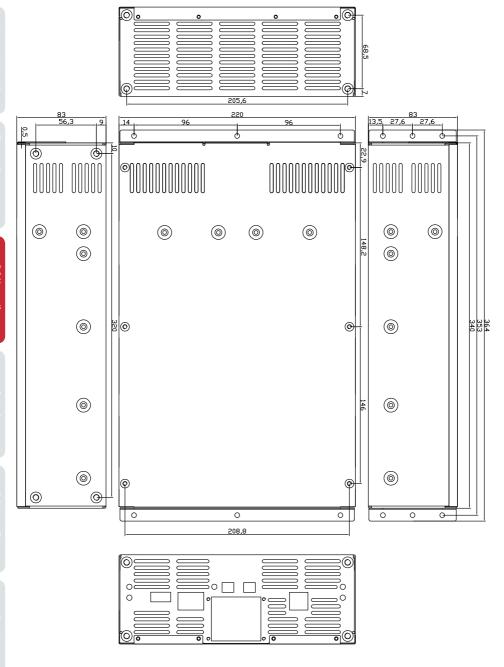

Umgebung	Klasse	min	typ	max	Einheit
Umgebungstemperatur Betrieb	EB	0		70	°C
Umgebungstemperatur Betrieb bei voller Leistung	EE	0		50	°C
Leistungsabnahme über 50°C			2.5		%/K
Umgebungstemperatur Lagerung		-10		70	°C
Relative Luftfeuchte, 550°C nicht kondensierend		30		80	%
Abnahme Luftfeuchte über 50°C			1		%/K
Höhe Betrieb				2000	m NN
Netz	Klasse	min	typ	max	Einheit
Netzspannung 2400W einphasig Netzspannung 5000W dreiphasig	AB	180 3x 340	230 3x 400	265 3x 460	V _{eff}
Netzfrequenz		48		63	Hz

Elektrische Daten	Klasse	min	typ	max	Einheit
Zeitkonstante Ausgangsstrom			50		μs
Zeitkonstante Ausgangsspannung			5		ms
Modulationsfrequenz der Ausgangsspannung				20	Hz
Netzausregelung	Α			0.1	%
Lastausregelung	Α			0.2	%
Lastbereich	Α	0		100	%
Ursprüngliche Genauigkeit der Spannung				0.5	%
Einstellbereich Spanngung		0		100	%
Auflösung Spannungseinstellung			0.25		%
Wechselspannung (3) - bei Netzfrequenz - bei Schaltfrequenz - voller Bereich 0-30MHz			0.25 0.5 TBD		% eff
gegenseitige Regelung		N/A			
Temperaturkoeffizient	Α			0.01	%/K
Netzaustastung	D		1		ms
Anlaufzeit	F			5	S
Einschalt-Überhöhung Spannung	В			1	%
Reaktion auf Laständerung - Spannungsabweichung - Erholzeit - Laständerung	D A A			20 1 100	% ms %
Spannungseinbruch bei Laständerung	D				
Reihenschaltung			N/A		
Parallelschaltung			N/A		
(3) Zeitkonstante und Wechelspannung sind lastabhängig. Die gezeic	iten Werte gelte	n für maximal	e Last.		

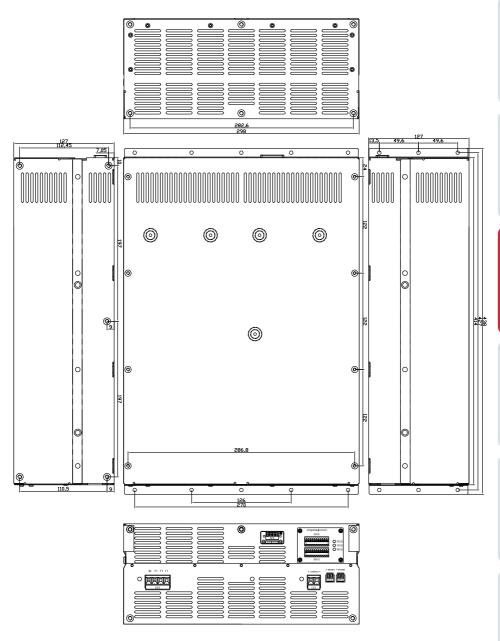
Fernprogrammierung	Klasse	min	typ	max	Einheit
analoge Programmierung (Option) - Spannungsprogrammierung U oder I - Stromprogrammierung U oder I	B B		10 6.25		%/V %/mA
digitale Programmierung - RS232 (Option) - CAN (Option)	С				

Dimensions (4)(5)	Klasse	Breite (A)	Höhe (B)	Tiefe (C)	Einheit
Modelle 2400W		220	83	340	mm
Modelle 5000W		300	128	420	mm

⁽⁴⁾ Airflow is in the depth axis, air inlet is at the connector side.


Bestelldaten

Die Netzteile brauchen immer eine Schnittstelle. Bitte geben Sie die gewünschte Schnittstelle bei Ihrer Bestellung an.


Modelle 2400W 2	30Vac	Modelle 5000W 3	x400Vac
Nummer	Beschreibung	Nummer	Beschreibung
45.22.60.40	0-50V 50A	45.24.20.40	0-50V 100A
45.22.60.50	0-100V 25A	45.24.20.50	0-100V 50A
45.22.60.60	0-150V 16A	45.24.20.60	0-150V 25A
45.22.60.70	0-200V 12A	45.24.20.70	0-200V 25A
		45.24.20.75	0-250V 20A
45.22.60.80	0-300V 8A	45.24.20.80	0-300V 16.5A
45.22.60.90	0-400V 6A	45.24.20.90	0-400V 12.5A
Schnittstellen			

Nummer Beschreibung Anschluss
94.60.330.10 Analog-Spannung 0-10Vdc 2x Ein 2x Aus Phoenix MCDV0,5-G1-2,5
94.60.330.20 Analog-Stromschleife 4-20mA 2x Ein 2x Aus jeder Kanal isoliert, Genauigkeit +/- 2%
94.60.331.10 seriell EIA-/RS-232 SUB-D 9-Pin weiblich
94.60.333.10 CAN SUB-D 9-Pin männlich

[©] Redline Technologies Elektronik GmbH - herausgegeben 2013-06-14

Abmessungen 2400W

Abmessungen 5000W